首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4720篇
  免费   259篇
  国内免费   21篇
化学   3237篇
晶体学   20篇
力学   107篇
数学   679篇
物理学   957篇
  2023年   48篇
  2022年   30篇
  2021年   96篇
  2020年   138篇
  2019年   133篇
  2018年   90篇
  2017年   73篇
  2016年   220篇
  2015年   159篇
  2014年   190篇
  2013年   263篇
  2012年   391篇
  2011年   488篇
  2010年   229篇
  2009年   150篇
  2008年   321篇
  2007年   325篇
  2006年   297篇
  2005年   279篇
  2004年   196篇
  2003年   130篇
  2002年   115篇
  2001年   51篇
  2000年   39篇
  1999年   32篇
  1998年   24篇
  1997年   20篇
  1996年   38篇
  1995年   38篇
  1994年   30篇
  1993年   36篇
  1992年   29篇
  1991年   14篇
  1990年   11篇
  1989年   18篇
  1987年   12篇
  1986年   11篇
  1985年   13篇
  1984年   9篇
  1983年   14篇
  1982年   21篇
  1981年   8篇
  1980年   8篇
  1979年   17篇
  1978年   9篇
  1977年   16篇
  1976年   17篇
  1974年   11篇
  1973年   37篇
  1972年   6篇
排序方式: 共有5000条查询结果,搜索用时 265 毫秒
91.
The application of the Clar aromatic sextet valence bond (VB) model to extended, defect-free single-walled carbon nanotubes (CNTs) with roll-up vectors (m, n) provides a real space model of their electronic structure. If m - n = 3k, where k is an integer, then all pi-electrons can be represented by aromatic sextets, and the CNT is fully benzenoid; the converse is also true. Since m - n = 3k is known to be a necessary criterion for conductivity in CNTs, only fully benzenoid CNTs are metallic, and only potentially metallic CNTs are fully benzenoid. This behavior contrasts with that of planar polycyclic aromatic hydrocarbons, in which the fully benzenoid structures are known to have large HOMO-LUMO gaps. For CNTs that are not fully benzenoid, e.g., m - n = 3k + l, where l = 1 or 2 and k is an integer, a seam of double bonds wraps about an otherwise benzenoid CNT at the chiral angle - 60 degrees or the chiral angle, respectively. Nucleus-independent chemical shift calculations on hydrogen-terminated CNT segments support this, and show that the magnetic manifestation of aromatic sextets is not due to electron correlation. The resonance hybrid of the Clar VB structures corresponds to patterns occasionally observed in scanning tunneling microscopy images of CNTs.  相似文献   
92.
Researchers in the post-genome era are confronted with the daunting task of assigning structure and function to tens of thousands of encoded proteins. To realize this goal, new technologies are emerging for the analysis of protein function on a global scale, such as activity-based protein profiling (ABPP), which aims to develop active site-directed chemical probes for enzyme analysis in whole proteomes. For the pursuit of such chemical proteomic technologies, it is helpful to derive inspiration from protein-reactive natural products. Natural products use a remarkably diverse set of mechanisms to covalently modify enzymes from distinct mechanistic classes, thus providing a wellspring of chemical concepts that can be exploited for the design of active-site-directed proteomic probes. Herein, we highlight several examples of protein-reactive natural products and illustrate how their mechanisms of action have influenced and continue to shape the progression of chemical proteomic technologies like ABPP.  相似文献   
93.
94.
Olefin cross-metathesis (CM) is potentially an attractive method for generating dynamic combinatorial libraries (DCLs). In order for the CM reaction to be useful for DCL production, the course of the reaction and product distribution must be relatively insensitive to functionality remote from the reacting centers. We report on the CM of a series of allyl- and homoallylamides that are strongly dependent on remote functionality. This includes an unusual example of a cis-selective CM. [Reaction: see text]  相似文献   
95.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   
96.
The preparation of several ruthenium complexes containing cyanocarbon anions is reported. Deprotonation (KOBut) of [Ru(NCCH2CN)(PPh3)2Cp]PF6 (1) gives Ru{NCCH(CN)}(PPh3)2Cp (2), which adds a second [Ru(PPh3)2Cp]+ unit to give [{Ru(PPh3)2Cp}2(μ-NCCHCN)]+ (3). Attempted deprotonation of the latter to give the μ-NCCCN complex was unsuccessful. Similar chemistry with tricyanomethanide anion gives Ru{NCC(CN)2}(PPh3)2Cp (4) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)CN}]PF6 (5), and with pentacyanopropenide, Ru{NCC(CN)C(CN)C(CN)2}(PPh3)2Cp (6) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)C(CN)C(CN)CN}]PF6 (7). The Ru(dppe)Cp* analogues of 6 and 7 (8 and 9) were also prepared. Thermolysis of 6 (refluxing toluene, 12 h) results in loss of PPh3 and formation of the binuclear cyclic complex {Ru(PPh3)Cp[μ-NC{C(CN)C(CN)2}CN]}2 (10). The solid-state structures of 2-4 and 8-10 have been determined and the nature of the isomers shown to be present in solutions of the binuclear cations 7 and 9 by NMR studies has been probed using Hartree-Fock and density functional theory.  相似文献   
97.
The self-assembly behavior of a fullerene-based surfactant, C60(CH3)5K, in water was studied using a combination of static and dynamic light scattering, as well as transmission electron microscopy, and compared to that of the compound C60(C6H5)5K. Both fullerene surfactant systems spontaneously assemble into large vesicles consisting of closed spherical shells formed by bilayers, with critical aggregation concentrations (CAC) lower than 10(-6) g ml(-1). At low concentrations, the aggregate sizes of C60(CH3)5K (radius R approximately 26.8 nm) and C60(C6H5)5K (R approximately 17.0 nm) were found to be substantially different from each other, showing that the change of the substituents surrounding the polar cyclopentadienide head group makes it possible to control the size of the resulting aggregates. Furthermore, the C60(CH3)5K vesicles were found to exist in two qualitatively different types of aggregation with a critical reaggregation concentration (CRC) located at 3.30 x 10(-6) g ml(-1). Above the CRC, larger aggregates were observed (R approximately 37.6 nm), showing a more complex form of supramolecular aggregation, e.g., in terms of multi-bilayer vesicles and/or of clusters of bilayer vesicles.  相似文献   
98.
Ceramides are important intracellular second messengers that play a role in the regulation of cell growth, differentiation and programmed cell death. Qualitative and quantitative analysis of these second messengers requires sensitive and specific analytical methods to detect endogenous levels of individual ceramide species and to differentiate between them. Nine synthetic ceramides were separated by liquid chromatography coupled to tandem mass spectrometry on a C18 bonded silica column. The lipids were eluted in gradient elution mode using a mixture of water, acetonitrile and 2-propanol as mobile phase. They were detected by reaction monitoring performed on positive ion electrospray generated ions. Collision-induced fragmentations conducted on ceramides produced a well characteristic product ion at m/z 264, making multiple reaction monitoring (MRM) well suited for various ceramides quantitative measurements. After optimization of the extraction step, the proposed methodology was able to identify and quantify different ceramide species issued from human cancer cells. The method could be validated for C16, C18 and C20 ceramides, quantified at the nanogram level. The validation exhibits good results with respect to linearity, accuracy and precision.  相似文献   
99.
100.
The lowest excited state of [Ru(TAP)2(dppz)]2+ (TAP = 1,4,5,8-tetraazaphenanthrene, dppz = dipyrido[3,2-a:2',3'-c]phenazine) 1 is strongly luminescent, even in water, and very oxidizing. Therefore it is able to oxidise not only guanosine-5'-monophosphate (GMP), as demonstrated by laser flash photolysis, but also guanine-containing polynucleotides such as calf thymus DNA and [poly(dG-dC)]2. The luminescence quenching was found to be faster in H2O than in D2O, as is the back reaction, indicating that both processes probably proceed by proton-coupled electron transfer. These properties, that are controlled by the triplet MLCT state in which the charge has been transferred from the Ru to a TAP ligand, contrast with those of the well known [Ru(phen)2(dppz)]2+ 2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号